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SUMMARY

Homeostatic mechanisms stabilize neuronal activity
in vivo, but whether this process gives rise to
balanced network dynamics is unknown. Here, we
continuously monitored the statistics of network
spiking in visual cortical circuits in freely behaving
rats for 9 days. Under control conditions in light
and dark, networks were robustly organized around
criticality, a regime that maximizes information ca-
pacity and transmission. When input was perturbed
by visual deprivation, network criticality was severely
disrupted and subsequently restored to criticality
over 48 h. Unexpectedly, the recovery of excitatory
dynamics preceded homeostatic plasticity of firing
rates by >30 h. We utilized model investigations to
manipulate firing rate homeostasis in a cell-type-
specific manner at the onset of visual deprivation.
Our results suggest that criticality in excitatory net-
works is established by inhibitory plasticity and
architecture. These data establish that criticality is
consistent with a homeostatic set point for visual
cortical dynamics and suggest a key role for homeo-
static regulation of inhibition.

INTRODUCTION

Neocortical networks give rise to stable activity patterns in the

face of perturbation and destabilizing forces; proteins turn over

rapidly, Hebbian modifications alter and introduce positive feed-

back into networks, sensory drive is variable, and environments

change over many timescales (Abbott and Nelson, 2000; K€atzel

and Miesenböck, 2014; Rasmussen et al., 2017). Homeostatic

plasticity mechanisms, which operate via negative feedback,

are believed to compensate for these changes and constrain

neuronal activity to a firing rate (FR) set point (Turrigiano et al.,

1998; Ibata et al., 2008; Tetzlaff et al., 2011; Slomowitz et al.,

2015; Hengen et al., 2016). Although these mechanisms are

poised to stabilize FRs (Abbott and Nelson, 2000; Turrigiano,

2017), it is unclear whether higher order aspects of neural activity

are also subject to active stabilization.
Homeostatic plasticity has been most extensively studied in

neocortical pyramidal neurons, which have a variety of cell-

autonomous and local microcircuit mechanisms that can coun-

terbalance perturbations in activity (Turrigiano et al., 1998;

O’Brien et al., 1998; Turrigiano, 2008; Pozo and Goda, 2010;

Lambo and Turrigiano, 2013). Consistent with this, in the visual

cortex (V1), long-term visual deprivation initially suppresses

neuronal firing (Hengen et al., 2013; Mrsic-Flogel et al., 2007),

which then exhibits a homeostatic rebound to baseline levels

over multiple days (Hengen et al., 2013; Keck et al., 2013; Barnes

et al., 2015). FR rebound is exhibited at the level of individual reg-

ular spiking units (RSUs) (presumptive pyramidal neurons; Hen-

gen et al., 2016), congruent with the expression of homeostatic

plasticity mechanisms, such as synaptic scaling and plasticity

of intrinsic excitability (Ibata et al., 2008; Ancona Esselmann

et al., 2017; Lambo and Turrigiano, 2013). In models, similar pro-

cesses stabilize network output by preventing runaway gain

problems caused by synapse-specific plasticity, such as long-

term potentiation (LTP) and long-term depression (LTD; von

der Malsburg, 1973; Bienenstock et al., 1982; Miller and

MacKay, 1994). Although these data suggest a key role for

cell-autonomous FR homeostasis in stabilizing brain activity, it

is unclear how FR homeostasis contributes to circuit dynamics

in the intact brain. Networks in vivo are complex and composed

of diverse cell types with recurrent and plastic connectivity, and

there is evidence that cell-type-specific changes cooperate to

influence circuit stability. Inhibitory and excitatory neurons can

exhibit opposite and complementary responses to visual manip-

ulation (Maffei et al., 2004), inhibition and excitation must be

matched in models of additive recurrent networks to achieve

selection and amplification (Wersing et al., 2001), and inhibitory

connectivity permits long-term information storage in models

of volatile networks (Mongillo et al., 2018). Further, upon sensory

deprivation, inhibitory neurons exhibit suppression and homeo-

static recovery 24 h prior to excitatory neurons (Hengen et al.,

2013; Kuhlman et al., 2013), suggesting a key role for inhibition

in direct homeostatic challenges. Ultimately, it is circuit dy-

namics that must be stabilized, a process that is not an inevitable

endpoint of stable neurons (Liberti et al., 2016; Chambers and

Rumpel, 2017). What aspects of circuit dynamics serve as a

homeostatic endpoint and the underlying mechanisms that sta-

bilize them remain unknown.

Dynamics emerge from the interaction of neurons and estab-

lish the computational regime of a network. Cortical networks
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are assumed to (1) be ‘‘balanced,’’ such that runaway gain does

not drive the network toward saturation or silence, (2) encode

and transmit information across a wide range of spatial (mm to

cm) and temporal (ms to min/h/etc.) scales, (3) have a broad dy-

namic range, and (4) be capable of processing complex informa-

tion. Each of these criteria falls out of a specific nonequilibrium

regime of population dynamics called ‘‘criticality,’’ which has

been proposed as a possible set point for neuronal networks

(Bertschinger and Natschl€ager, 2004; Priesemann et al., 2014;

Shew et al., 2015; Karimipanah et al., 2017). Criticality is a

network state poised at the boundary between strongly and

weakly coordinated population activity that maximizes informa-

tion capacity (entropy) and transmission (Shew and Plenz,

2013; Cocchi et al., 2017). Measures of criticality are indepen-

dent of FR and network size, making it a conceptually attractive

candidate for a signature of stable networks capable of normal

information processing (Beggs and Plenz, 2004; Haldeman and

Beggs, 2005; Beggs, 2008). Previous work suggests that cortical

networks are critical (Beggs and Plenz, 2003; Gireesh and Plenz,

2008). Despite this, the possibility that criticality may serve as the

set point of homeostatic processes in the intact brain has not

been addressed (Shew and Plenz, 2013).

Homeostatic plasticity is difficult to assay in the intact animal,

as many compensatory processes serve to counterbalance fluc-

tuations in a wide range of inputs and states. Monocular depriva-

tion (MD) is widely accepted as a direct, physiologically relevant

homeostatic challenge to cortical activity in vivo. Brief MD (1 or

2 days) results in widespread LTD across V1 and changes the in-

tracortical excitation-inhibition balance (Heynen et al., 2003;

Miska et al., 2018), leading to a >50% suppression of neuronal

spiking (Hengen et al., 2013, 2016). Prolonged MD reveals ho-

meostatic increases in synaptic strengths and intrinsic excit-

ability (Lambo and Turrigiano, 2013) and a rebound of neuronal

activity to baseline levels (Hengen et al., 2016). Recording

network spiking continuously in this context allowed us to

directly ask whether criticality is also a homeostatic set point

of cortical circuits. In this context, we sought to answer three

questions: first, to what extent is the cortex ‘‘critical’’ under

normal conditions; second, (if cortical activity reflects criticality)

is criticality a set point for cortical dynamics; and third, does

firing rate homeostasis result in stable network properties?

RESULTS

To examine whether V1 networks exhibit criticality in freely

behaving rats, we combined new recordings with previously
Figure 1. DCC, the Deviation from Criticality Coefficient, Is an Effectiv

(A) Discrete relaxation events, i.e., avalanches, are identified in ensemble record

interest can contribute to an avalanche, which is measured as a function of the n

(B) (Left, center) The probability (PDF [probability distribution function]) of observin

each generating an exponent (t, a); the exponent is the slope of the line in a log-log

critical systems, size and duration scale according to the displayed formula. The

exponent (dashed gray line) is a quantitative measure of deviation from criticality

(C) Avalanche size PDF and associated DCC extracted frommodel networks oper

left). (Bottom right) Ground truth model testing of DCC is shown. In three model

adjacency matrix (1.0 indicates a critical regime by definition).

(D) Avalanche size PDFs and DCCs extracted from 4 h of single-unit data in each of

study. Data in (B) and (D) are derived from control hemisphere ensembles of well-is
collected data, in which we were able to follow extracellular, reg-

ular-spiking (RSU) single-unit activity for 168 h from both the

deprived and control hemispheres of monocular V1 (V1m) (Hen-

gen et al., 2016) andmeasured network state with respect to crit-

icality. RSUs (Niell and Stryker, 2008; Hengen et al., 2013) were

classified as continuously recorded if spikes within the cluster

were present for at least 80%of the 7-day recording period (Hen-

gen et al., 2016; 46 RSUs from 7 animals). Units present for less

than 80% of the recordings were classified as non-continuous

and considered as individual units within each applicable 4-h

bin (MD: 10,280; control: 8,584 RSUs from 7 animals). Network

measurements include all single-unit RSUs detectable in each

4-h bin, and measurements of FR homeostasis are based on

continuously observable RSUs. All analyses utilize the same

7 animals with simultaneous recordings in control and deprived

hemispheres.

Critical systems are defined by scale free dynamics such that

events spanning all spatial and temporal scales are observed ac-

cording to power laws. Events are neither limited to small, local

bursts nor do events ‘‘snowball’’ and consume the network. In

this context, events are contiguous cascades of spiking activity

(Beggs and Plenz, 2003; Gautam et al., 2015) colloquially termed

‘‘neuronal avalanches.’’ In other words, avalanches are bursts of

spiking activity across a circuit or network, whose start and stop

are defined by crossing a threshold of network activity (STAR

Methods). Controversially, the observation of power laws in

avalanches has been interpreted as an indicator of criticality

(see Beggs and Timme, 2012; Wilting and Priesemann, 2018).

Power laws are insufficient to indicate criticality and can emerge

from noise (Touboul and Destexhe, 2017). The most demanding

indicator of criticality is ‘‘exponent relation,’’ a measure capable

of separating truly critical dynamics from chaos models that

generate power laws (Touboul and Destexhe, 2017). To assess

exponent relation in our data, avalanches were analyzed in terms

of size (S) (the number of spikes) and duration (D) (time; Figures

1A and S1). Power law exponents were fit to the both the size (t)

and duration (a) distributions. In critical systems, the relationship

between size and duration is described by: b = (a � 1)/(t � 1). In

other words, t and a can be used to predict the mean avalanche

size (< S >) observed at a given duration according to a third po-

wer law exponent, b (Friedman et al., 2012; Tang and Bak, 1988).

Here, we introduce a quantitative, scalar measure of how

close to criticality a system is operating; when < S > is plotted

against avalanche duration, the difference between the empiri-

cally derived b and the predicted b serves as a compact mea-

sure of the deviation from criticality (deviation from criticality
e, Scalar Measure of How Near a Neural Network Is to Criticality

ings by the presence of silent periods. Spikes from all neurons in a region of

umber of contributing spikes (S) or the event duration (D).

g an avalanche of a given size (gold) or duration (blue) can be fit by power laws,

plot. Solid gray traces display avalanche distributions in shuffled data. (Right) In

difference between the predicted exponent (solid gray line) and the observed

(deviation from criticality coefficient [DCC]).

ating in critical (top left), supercritical (top right), and subcritical regimes (bottom

networks (three colors), DCC is compared to the maximum eigenvalue of the

three example animals; examples are a subset of the seven animals used for this

olated RSUs. Model and empirical data have been fit with power law functions.
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Figure 2. Network Dynamics Are Homeo-

statically Tuned to Near-Criticality, Inde-

pendently of Excitatory FR Homeostasis

(A) The FRs of continuously observable excitatory

neurons followed across 7-day recordings show a

biphasic response to monocular deprivation (MD)

(47 units; 7 animals). FRs were normalized to 24 h

of baseline recordings prior to the induction of MD.

FRs were stable for >24 h after the light exposure

on the first day of MD (0 h). FRs were maximally

suppressed at 36 h (blue arrow) and rebounded to

baseline levels by 84 h (gold arrow).

(B) In the same recordings, critical dynamics were

assessed. In the first 4 h of light exposure following

lid suture, the mean DCC more than tripled (blue

arrow). The mean DCC was restored to baseline

levels at 48 h (gold arrow).

(C) In the control hemisphere, MD had no signifi-

cant impact on mean normalized FR of continu-

ously observable units.

(D) Likewise, in the control hemisphere, MD had no

significant impact on DCC. Data from the night

before MD1 are not shown as they are subject to

artifacts from brief anesthesia and lid suture.

Dashed gray line is the baseline mean. Solid green

line marks 25% change from baseline. Red arrow

is time of lid suture. Blue arrowmarks the first bin in

which data cross the 25% line. Gold arrow marks

the first bin in which data return to within 25% of

baseline.

Error bars represent SEM.
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coefficient [‘‘DCC’’]; Figure 1B). This term, DCC, effectively

identifies synthetic data tuned to subcritical, critical, and super-

critical network states (Figure 1C). In control conditions, in vivo

cortical circuits were organized close to criticality (DCC < 0.2;

Figure 1D).

In addition to DCC, we evaluated network state by employing

two additional methods. First, we examined ‘‘shape collapse,’’

which tests the necessity that, in critical systems, avalanche pro-

files of all sizes are revealed to be copies of each other at

different scales (Figures S2 and S3; see STAR Methods; Fried-

man et al., 2012; Ponce-Alvarez et al., 2018). Second, we

measured the ‘‘branching ratio’’ or the expected number of

neurons activated by one neuron in the previous time step.

A network at the critical point will have a branching ratio near

1.0. This approach does not employ the avalanches construct

(Figures S2 and S3; see STARMethods;Wilting and Priesemann,

2018).

Cortical Circuits In Vivo Actively Return to Criticality
following Perturbation
The combination of new recordings (n = 2 animals) with earlier

datasets (n = 5 animals) further supported previous findings
4 Neuron 104, 1–10, November 20, 2019
(Hengen et al., 2016). After 28 h of MD,

RSU spontaneous single-neuron FR

was suppressed by �60%. By 84 h (the

5th day), the same neurons exhibited a ho-

meostatic rebound to baseline FR (Fig-

ure 2A). These results mirror the time
course of cellular responses to MD via lid suture (Rittenhouse

et al., 1999; Heynen et al., 2003; Lambo and Turrigiano, 2013;

Hengen et al., 2013). In stark contrast, cortical circuits deviated

from the critical network state rapidly upon light exposure

following MD (DCCz0:6; Figure 2B) more than 24 h before

RSU FRs were perturbed. Cortical circuits returned to near crit-

icality at 48 h while FRs were at the nadir of their suppression.

The rapid deviation from criticality at the onset of MD preceded

a reduction in pyramidal single-neuron FRs by nearly 30 h (Fig-

ures 2A and 2B), similar to the time course of inhibitory FR sup-

pression (Hengen et al., 2013). FR homeostasis of RSUs lagged

the resurrection of network criticality by >32 h (Figures 2A and

2B). All animals exhibited this effect (individual animal data in Fig-

ures S1 and S4). Control hemisphere FRs and network dynamics

were unaffected by MD and showed no significant changes

across the time course of the experiments (Figures 2C and

2D). In addition, under baseline conditions (i.e., prior to lid su-

ture), the network state in V1 operated near the critical regime

ðDCCz0:2Þ in both light and dark (Figure 2B). These data are

consistent with the hypothesis that criticality serves as a central

attractor of circuit dynamics in V1 of freely behaving animals. The

timing of the deviation and subsequent recovery from criticality
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Models

(A) (Left) Illustration of model recurrent network with excitatory input (blue) to inhibitory (orange) and excitatory (green) neurons. (Right) Illustration of model time

course and ‘‘successful’’ results is shown. Firing rates of excitatory (E) and inhibitory (I) neurons and network state with respect to criticality (DCC) weremonitored

continuously. In successful models, ‘‘lid suture’’ (reduction in excitatory input, blue/gray line) rapidly increased DCC (u) and suppressed inhibitory neuron FRs

prior to suppressing excitatory neuron FRs (d), and each of these measures returned to baseline parameters (ε) despite maintained reduction in input.

(B) The inhibitory fraction of the network and the number of excitatory neurons contacted by each inhibitory neuron were systematically varied across three levels

of input to inhibitory neurons. Only three discrete combinations of parameters were sufficient to reproduce empirical results (green, blue, and gray).

(C) A reasonable (nearby) but unsuccessful arrangement of inhibitory parameters was selected (dashed red line in B). With these parameters fixed, no explored

region in the three-dimensional space defined by homeostatic plasticity gain (synaptic scaling [SS]), spike-timing-dependent plasticity gain (STDP), and

excitatory-to-excitatory neuron connectivity (%) was capable of rescuing the model. STDP gain factor was applied to both inhibitory and excitatory terms.
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reveals that the organization of the network around this regime

cannot be accounted for by excitatory neuron FR homeostasis.

The timing of homeostasis around criticality, although measured

in excitatory avalanches, is more consistent with the advanced

FR drop and rebound of inhibitory neurons (Hengen et al.,

2013; Keck et al., 2013).

Inhibitory Parameters in Network Models Are Essential
for Criticality
To understand what aspects of cortical networks might support

FR homeostasis and the emergence of an attractor near criti-

cality, we created an abstract model whose key features resem-

bled those found in V1 (Figure 3). Parameters were chosen

based on empirically determined values, e.g., inhibitory neurons

were the minority of neurons (Markram et al., 2004), and were

more broadly connected throughout the network than were

excitatory neurons (Packer and Yuste, 2011). Excitatory synap-
ses onto both excitatory and inhibitory neurons expressed ho-

meostatic (synaptic scaling [SS]) and spike-timing-dependent

(STDP) (i.e., Hebbian) plasticity mechanisms. SS was a global,

multiplicative adjustment of all excitatory synapses onto a

neuron that served to compensate for deviations in output.

STDP was an activity-dependent increase or decrease in the

strength of a specific synapse onto excitatory neurons (Del

Papa et al., 2017). To mimic MD, we subjected models to a

sustained reduction of excitatory input. In successful models,

this manipulation was sufficient to drive an STDP-dependent

suppression of activity, similar to that induced by early MD

(Hengen et al., 2016). We then searched for subsets of model

parameter combinations that replicated our empirical results,

specifically (1) a deviation of the network state from criticality

upon reduced input; (2) a reduction in FR, first of inhibitory

neurons followed by excitatory neurons (Hengen et al., 2013);

and (3) a homeostatic recovery of FR and criticality (Figure 3A).
Neuron 104, 1–10, November 20, 2019 5
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We explored >400 combinations of three parameters: (1) the

fraction of inhibitory neurons in the network; (2) the fraction of

excitatory neurons contacted by each inhibitory neuron; and

(3) the fraction of inhibitory neurons receiving external input.

Less than 0.5% of the models satisfied these constraints (Fig-

ure 3B). To assess whether non-inhibitory mechanisms were

equally effective in reproducing experimental results, we

selected inhibitory parameters of a failure regime adjacent to a

successful model (Figure 3B, dashed red). With these inhibitory

parameters fixed, we varied synaptic plasticity (10- to 150-fold

change in gain, SS, and STDP) and excitatory-to-excitatory con-

nectivity (1%–30%). No explored combination was capable of

rescuing the results (Figure 3C). Together, these data suggest

that real cortical networks have selected for precise excitatory-

inhibitory connectivity rules (Yoshimura andCallaway, 2005; Lar-

remore et al., 2011; Tanaka et al., 2012) and that these rules are

sufficient to produce critical dynamics.

Our successful models also offered insight into previous

empirical findings regarding FR homeostasis. Following MD,

excitatory synapses onto both excitatory and inhibitory neurons

were acutely subject to synaptic depression (Miska et al., 2018;

Kuhlman et al., 2013); the reduced input to excitatory neurons

was initially offset by the reduced activity of inhibitory neurons.

The initial delay in excitatory FR suppression is thus a result of

disinhibition, not a delay in Hebbian LTD. Due to the immediate

suppression of inhibitory neuronal activity, homeostatic synaptic

plasticity was activated in inhibitory neurons well before excit-

atory neurons and inhibitory neurons underwent firing rate ho-

meostasis first.

Inhibitory Homeostatic Plasticity Constrains Network
Dynamics
Finally, to probe the contributions of Hebbian and homeostatic

synaptic plasticity to FRs and critical dynamics, we re-ran suc-

cessful models (Figures 4A–4D) and systematically turned off

either SS or STDP in either excitatory or inhibitory neurons

upon the initiation of input reduction. As expected, the deletion

of SS from excitatory neurons resulted in runaway gain that

severely destabilized FRs (von der Malsburg, 1973; Abbott and

Nelson, 2000; Turrigiano and Nelson, 2004) and the network

state with respect to criticality (Figures 4E–4H). Consistent with

LTD contributing to the early phase of MD, elimination of STDP

from either excitatory or inhibitory neurons prevented the impact

of input reduction altogether (Figure S5). In contrast, elimination

of SS from inhibitory neurons pushed network dynamics out of

the critical regime without causing runaway gain in FRs of either

class of neuron (Figures 4I–4L). This reflects the role of broadly

connected inhibitory interneurons in establishing a network

poised precisely at the transition between decay and saturation.

DISCUSSION

In this study, we continuously tracked the activity of cortical

circuits for 7 days in freely behaving animals. We sought to

answer two key questions. First, is criticality consistent with a

homeostatic set point for cortical dynamics? Second, if so, are

critical dynamics the end result of FR homeostasis? Utilizing

MD as a direct homeostatic challenge to neuronal activity in
6 Neuron 104, 1–10, November 20, 2019
V1m, here we demonstrate that excitatory neural activity in visual

cortex is actively organized near criticality, a computationally

attractive network regime poised at a phase transition between

excitation and inhibition (Shew et al., 2015). This regime is

balanced (avoids issues of runaway gain), maximizes information

content and transmission in space and time, and maximizes dy-

namic range. Our data are consistent with previous theoretical

suggestions that criticality may function as a homeostatic set

point of cortical network dynamics (Shew and Plenz, 2013;

Stepp et al., 2015). The disruption and recovery of criticality in

excitatory neurons during MD preceded FR changes in the

same cells by more than 30 h. This pattern mirrors MD-induced

shifts in the FRs of fast-spiking inhibitory interneurons. Our

model investigations indicate that homeostatic mechanisms in

excitatory neurons are necessary for stable FRs and homeostat-

ic mechanisms in inhibitory neurons establish network interac-

tion magnitude and activity covariance, which directly influence

computational regimes, such as criticality. It is important to note

that a test of bidirectionality is necessary to fully establish criti-

cality as a homeostatic set point. This requires one of two things:

(1) a manipulation opposite that of MD sufficient to drive a sus-

tained increase in V1 activity, e.g., via chronic stimulation of tha-

lamocortical projections, or (2) conditions capable of promoting

a supercritical regime independent of FRs, perhaps as the result

of intensive learning in a balanced excitation-inhibition network

(Bhatia et al., 2019).

Two criticisms have challenged previous work on criticality

and emergent network dynamics in general. First, the detection

of stable dynamics does not imply active regulation and may

reflect an epiphenomenon; despite the self-organization of

many neural systems to a common set point, there has been

no evidence that these set points are a homeostatically main-

tained target of network organization (Shew and Plenz, 2013).

Second, detection of criticality may be a false positive. Power

law distributions can be achieved by independent stochastic

surrogates, i.e., disconnected nodes in a complex system (Tou-

boul and Destexhe, 2017). Assays of criticality require extensive

sampling, and previous work has been hamstrung by severe

subsampling (Ribeiro et al., 2010). Our data offer a uniquely

powerful insight into critical dynamics due to the number of

avalanche events that we collected in�200-h recordings. By uti-

lizing an established homeostatic challenge to V1m (Lambo and

Turrigiano, 2013; Barnes et al., 2015), we were able demonstrate

that near criticality is eliminated rapidly upon MD and homeo-

statically resurrected soon thereafter. These changes, which

occurred independently of excitatory FRs, cannot be accounted

for by stochastic, disconnected systems (Touboul and Des-

texhe, 2017). Further, that the critical network state in visual cor-

tex spans extended periods of time as well as transitions in light

and dark suggests that it is not a result of a subset of initial con-

ditions but a generalized rule.

Our model investigations point to inhibitory interneuron wiring

and plasticity in establishing and maintaining criticality in cortical

circuits. These findings are consistent with a previous theoretical

study that demonstrated a role for inhibitory plasticity in stabiliz-

ing networks around criticality (Stepp et al., 2015). Here, the

parameters that we imposed upon the model in terms of

performance were derived from in vivo physiological data. We
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Model cortical networks composed of inhibitory and excitatory neurons were subjected to stable input for 20,000 simulation time steps (t0 to t1). STDP and SS

(a global multiplicative compensatory change in synaptic strength) were turned on at 50,000 steps (t1). External input to the network (vertical dashed line, t2) was

reduced as a homeostatic challenge mimicking monocular deprivation.

(A–D) Successful models recapitulated empirical results, such that input reduction suppressed FRs of inhibitory neurons (red) prior to excitatory neurons (green)

and both rebounded to baseline levels by tend (A) and eliminated the critical network state (max eigenvalue equals 1), which rebounded by tend (B). The mean

excitatory synaptic strength (P) across the time course of successful models revealed a net increase by tend (C). The progression of mean P as a function of

changes in P due to STDP (orange) and SS (green) is shown (D).

(E–H) Successful models were rerun, and SS was removed from excitatory neurons at the onset of input reduction. Inhibitory and excitatory FRs exhibited

runaway gain (E), and network dynamics became unboundedly supercritical (F). Mean P exhibited a similarly unbounded progressive increase (G) as a result of

uncompensated STDP (H).

(I–L) Successful models were rerun, and SS was removed from inhibitory neurons at the onset of input reduction. Neither excitatory nor inhibitory FRs exhibited

runaway gain (I). Near critical network dynamics were eliminated (J). Mean P exhibited a net reduction (K) and alongside stable SS and STDP (L).
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demanded that our model networks be capable of reproducing

FR homeostasis. That neurons homeostatically regulate their

output is a core prediction of homeostatic synaptic plasticity the-

ory (Turrigiano, 2017) and has been borne out in a variety of prep-

arations (Burrone et al., 2002; Hengen et al., 2013, 2016; Keck

et al., 2013), although whether this is true of all neurons and

neuronal subtypes is unclear (Barnes et al., 2015). Next, we

required that our model respond to input reduction by first

decreasing inhibitory FRs and then excitatory FRs. This delay

of excitatory suppression relative to both the manipulation and

the inhibitory suppression is less well characterized but evident

in two prior studies (Hengen et al., 2013; Kuhlman et al., 2013).

Assuming that inhibitory interneurons receive significant drive

from lateral geniculate nucleus (LGN; Cruikshank et al., 2007;

Kloc andMaffei, 2014; Miska et al., 2018) or from pyramidal cells

whose primary drive is thalamocortical, this is somewhat pre-

dictable; in a heavily recurrent circuit, simultaneously decreasing
drive to both inhibitory and excitatory cells logically results in the

acute phase of drive reduction being masked (at the level of

excitatory cells) via disinhibition. Finally, we required that our

model replicate the circuit dynamics with respect to criticality

that we describe here (Figure 2). Cortical circuits are robustly

critical in our baseline and control hemisphere data, which

span a week and include a wide variety of naturally occurring be-

haviors across light and dark. This measure established a subset

of initial conditions for our model as not all topologies are critical

(Hellyer et al., 2016). Many sets of parameters were successful

when measured against only one constraint (Figure 3); the small

set of solutions that overlap across constraints are therefore

more likely to provide insight into possible mechanisms in vivo.

The addition of the constraints discussed above resulted in

a number of notable conclusions. First, in a recurrent network,

inhibitory plasticity is insufficient to stabilize criticality, even

in systems that start out at criticality. Precisely tuning the
Neuron 104, 1–10, November 20, 2019 7
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connectivity of inhibitory interneurons to external input and local

excitatory neurons was necessary for successful models. Even

with inhibitory plasticity intact and criticality at start, models

with unsuccessful inhibitory architecture were not rescuable by

any tested combinations of homeostatic synaptic plasticity,

STDP, and excitatory connectivity (Figure 3). Second, in suc-

cessful models, we were able to observe the underlying synaptic

dynamics (Figures 4A–4D) and test the contribution of cell-

autonomous homeostatic synaptic plasticity and STDP in a

cell-type-dependent manner. As observed in models decades

ago (von der Malsburg, 1973), excitatory neurons with STDP

and no homeostatic rule are prone to runaway gain upon synap-

tic perturbation (Figures 4E–4H). Interestingly, deletion of synap-

tic scaling from inhibitory cells induced a metaplastic shift in FR

set points but did not produce runaway gain. This manipulation,

however, eliminated the capacity of networks to reorganize

around criticality (Figures 4I–4L). The elimination of STDP in

either class of neuron largely prevented the network from re-

sponding to input reduction at all (Figure S5). Given the broad

connectivity of parvalbumin-positive cortical interneurons

(Packer and Yuste, 2011) and previous models that indicate a

role for inhibition in stabilizing excitatory patterning (Mongillo

et al., 2018), our data suggest that a key role for homeostatic

regulation of inhibitory ensembles is to establish and actively

maintain the computational regime of excitatory circuitry.

Finally, the relationship between FR homeostasis and criti-

cality is indirect at best. Our data clearly demonstrate that FRs

of excitatory neurons need not be stable (within limits) for a

network to be critical; criticality dissipates before excitatory

FRs have changed, and criticality is re-established when excit-

atory FRs are maximally depressed. Based on our in silico

data, it is not difficult to produce a non-critical network with sta-

ble activity and similarly a network with drifting FRs and stable,

self-organized criticality. Taken in context of recent work, the

simplest interpretation of our data is that FR homeostasis of

inhibitory interneurons establishes a stable computational

regime in which excitatory processing plays out, independent

of the total magnitude of spiking activity. It is important that

future work test the cell-type-specific roles for inhibitory neurons

in long-term network dynamics and examine whether excitatory

FR homeostasis is necessary to maintain these regimes on etho-

logically relevant timescales of learning and experience-depen-

dent plasticity.
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(khengen@wustl.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

We combined two new recordings (see below) with previously published data from five animals (Hengen et al., 2016). All procedures

were approved by Brandeis University IACUC and were conducted in accordance NIH guidelines for the use of research animals.

Long Evans rats from Charles River were used. Both male and female rats were used, and the rats were postnatal day 21 at the

time of electrode implantation (see below).

METHOD DETAILS

In Vivo Data Acquisition
Experimental design, extracellular recordings, and data collection were as described previously (Hengen et al., 2013, 2016). Briefly,

on postnatal day 21 (P21), Long-Evans rat pups of both sexes were anesthetized and a small craniotomy was drilled over monocular

primary visual cortex of each hemisphere. Dura was resected and 16ch microelectrode arrays (Tucker-Davis Technologies) were

stereotaxically placed with wires spanning all 6 cortical layers. Single wires were implanted bilaterally into the nuchal muscles for

electromyographic signal (EMG) acquisition. Animals were allowed to recover from surgery for two days. On the second day of

recovery, animals were placed in the environmentally enriched recording chamber (which replicated a home-cage environment)

with a litter mate. Continuous data acquisition began after lights-on (ZT0) on P24. Baseline activity was recorded for 24 h (ZT12 of

P25 to ZT12 of P26). After lights-out (ZT12) at the end of baseline, animals were briefly disconnected (5-15 minutes) from recording

tethers and one eye was sutured. Animals were promptly returned to the recording chamber in complete darkness. Due to the

neuronal impact of brief anesthetization, data from the impacted bins of the baseline (P26 dark period) were ignored. The commence-

ment of monocular deprivation (MD) was considered lights-on (ZT0) of P27, at which time animals experienced stimulus-driven ocular

disparity for the first time. Recordings weremaintained continuously for the next 132h (MD1-MD6). Animal behavior was recorded via

synchronized video. All neural data were sampled at 30 kHz and broadband signals were written to disk for offline processing.

Data Processing
Neural data were bandpass filtered (300 to 10,000Hz) and thresholded for spike detection (�3.5 SD). Spikes were interpolated, spline

fit, and the first four principal components (PCs) of the waveform matrix were calculated. Spike PCs were clustered with Klustakwik

(Kadir et al., 2014). Clusters generated by single units were separated from those arising frommultiunits with a 15-node random forest

trained on > 2,000 single units from previous recordings. The most important feature in single-unit detection was the degree of

refractory period contamination. Tested against manually scored datasets, this automated processing generated over 93% agree-

ment. All machine-scored datasets were subsequently manually checked.

Cells were considered continuous if 1) clusters did not drift, 2) single-unit properties were maintained from the beginning of the

baseline period until hour 134 (80% of the recording), 3) biophysical properties were consistent with single units (e.g., refractory

period, stable waveform), and 4) Signal to noise ratio was high throughout the period considered (> = 80% of the recording). Single
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mailto:khengen@wustl.edu
https://www.anaconda.com/distribution/
http://www.mathworks.com/
http://klustakwik.sourceforge.net/


Please cite this article in press as: Ma et al., Cortical Circuit Dynamics Are Homeostatically Tuned to Criticality In Vivo, Neuron (2019), https://doi.org/
10.1016/j.neuron.2019.08.031
units that were not detectable for at least 80%of the recording were stored separately as transient units. Regular spiking units (RSUs)

and fast spiking units were identified based onwaveform shape (Niell and Stryker, 2008; Cardin et al., 2007). Only RSUswere consid-

ered in this work. The baseline recording (24 h) before lid-suture was used for firing rate normalization of continuous units.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data are represented as mean ± SD unless otherwise noted. In vivo deprived and control hemisphere measurements (DCC and firing

rate) were compared with mixed measures ANOVA or multiple comparisons corrected t tests.

Avalanche Analysis
We discretized time into 40 ms bins, binarized each neuron’s spike train into its ‘‘activity,’’ i.e., 0 or 1, and obtained the ‘‘network

activity’’ as the sum of all recorded activity within the time bin. Based on the network activity, we defined a ‘‘neuronal avalanche’’

by introducing a threshold at the 35th percentile of total network activity (Poil et al., 2008, 2012). Consistent with critical systems,

our results were robust across a range of bin sizes (30-500 ms) and thresholds (25 to 45%) For instance, for one 4-h bin of data

from baseline from one animal, the DCC ranged from 0.0057 to 0.2358, when choosing all possible combinations of time bin (range

30 to 500ms) and threshold (range 25 to 45 percentile). For the default choice of 40ms and 35th percentile, the DCC valuewas 0.0995

for this example dataset.

An avalanche starts when the network activity crosses the threshold from below and ends when the network activity crosses the

threshold from above. We quantified each neuronal avalanche by its size S, i.e., the integrated network activity between threshold

crossings, and its duration D, i.e., the time between threshold crossings. Using maximum likelihood estimation methods, we fitted

a truncated power law fðSÞ= ðS�t =
PSmax

Smin S
�tÞ to the avalanche size distribution of Nav avalanches using the following iterative

procedure (Clauset et al., 2009; Klaus et al., 2011). (i) Themaximum avalanche sizeSmax was taken as the largest observed avalanche

size. (ii) The exponent t was estimated for three values of the minimum avalanche size Smin ranging from 1 to 10 and the correspond-

ing Kolmogorov-Smirnov (KS) values were obtained. (iii) Theminimum avalanche size Smin and the corresponding exponent t yielding

the smallest KS value were chosen. (iv) When KS < 1=
ffiffiffiffiffiffiffiffi
Nav

p
, the exponent estimation was completed. Otherwise, the procedure (ii) to

(iv) was repeated with themaximum avalanche size Smax reduced by 1 until the condition KS < 1=
ffiffiffiffiffiffiffiffi
Nav

p
, was satisfied. We applied the

same fitting procedure to the avalanche duration distributions with corresponding exponent a. To evaluate whether a power law was

a plausible fit of an avalanche distribution, we performed hypothesis testing. We simulated 1000 artificial power law distributions

(surrogate distributions) with the same exponent, number of avalanches, minimum avalanche size, and maximum avalanche size,

as estimated from the experimental avalanche distribution. Specifically, using the inverse method, the surrogate distributions

were generated according to S = Sminð1 � rÞ�1=ðt�1Þ where r was a random number drawn from a uniform distribution between

0 and 1. Thereafter, the distribution was upper-truncated by setting a cut-off at the maximum value Smax observed in the empirical

data. The deviation between the simulated surrogate distributions and a perfect power law was quantified with the KS statistics. The

p value was calculated as the fraction of the surrogate distributions with KS values smaller than the KS value of the corresponding

experimental avalanche distribution. We took the significance level to be 0.05, i.e., for p < 0.05 the power law hypothesis was re-

jected, whereas for pR 0.05 the power law hypothesis was not rejected. To test whether average avalanche size scaledwith duration

according to <S> � Db, we estimated the fitted b from the experimental data using linear regression. We then compared the fitted b

to the predicted b = ða � 1Þ=ðt � 1Þ. We defined the absolute difference between fitted b and predicted b as the ‘‘Deviation from

Criticality Coefficient’’ (DCC) and adopted this number as a useful measure of the deviation of the network state from criticality.

Shape Collapse
Friedman et al. (2012) demonstrated that, for a neural system operating at criticality, the size versus duration exponent, b, can be

used to accomplish avalanche shape collapse, where avalanche profiles of different sizes are revealed to be copies of each other

at different scales (Figures S2A and S2B). Similarly, this test of criticality was recently performed by Ponce-Alvarez et al., (2018)

on the entire zebrafish brain.

When the system is operating near the critical state, avalanches of all durations will reflect the same scaled mean shape. The

average number of neurons firing at time t within an avalanche of duration D can be described as sðt;DÞfDgFðt =DÞ, where F is a

universal function determined by t=D. Given hSiðDÞ =
ZD
0

sðt;DÞdt, the relationship between g and b is g = b� 1. We utilized the

NCC toolbox in MATLAB (Marshall et al., 2016) to perform shape collapse on data from each four-hour bin of data. To be more

specific, a scaling exponent b was assigned to get g; and then hðsðt;DÞ =DgÞi was calculated as F(t/D). hi denotes the average

over avalanches with the same duration. A collection of F(t/D) were extracted for various avalanche durations as F. The average

normalized variance of F(t/D) over D is the error for shape collapse under this scaling exponent, as Var(F)/(max(F)-min(F))2. Via

this method, a range of scaling exponents ðbÞ are tested, and the b that produces the smallest shape collapse is selected as the

scaling factor.
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Theoretically, the b from shape collapse and the b from the scaling exponent should be the same, despite the fact that they are

derived via different methods. At baseline, the mean b from our fitted exponents (scaling relation) was 1.16 and the mean b from

shape collapse was 1.08.

To confirm the relationship between critical dynamics and shape collapse, we took advantage of our probabilistic integrate and fire

(PIF) model. In the PIF model it is possible to tune the network toward or away from criticality. Specifically, when themaximum eigen-

value (l) of the network adjacency matrix is precisely 1.0, the network is critical. It is at this point that e.g., the dynamic range of a

network is maximized (Larremore et al., 2011). We mapped the relationship between l and shape collapse error (Figures S3A and

S3B). We modeled networks with 2000 neurons and 6x105 time steps with a range of l from 0.81 to 1.14. We utilized the shape

collapse NCC tool box (Marshall et al., 2016).

While the shape collapse is a noisier metric than DCC (Figure 1C), error is minimized in critical regimes (Figure S3B). Avalanches

were grouped in 40 ms bins; for shape collapse, avalanches with durations from 3 to 100 bins (120 to 4,000 ms) were considered.

Beyond 100 bins, there were not enough avalanches to conduct meaningful shape collapses across the time course of our record-

ings, largely due to the effects of early monocular deprivation (i.e., when DCC was greatest). This is consistent with previous work

(Marshall et al., 2016). It is worth noting that the NCC toolbox requires gaps of silence to define avalanches. In model datasets, tuning

network l to > 1 (supercritical) results ceaseless activity. To define avalanches for shape collapse modeling, we thresholded network

activity as described above (Avalanche Analyses).

Branching Ratio
Based on the work of Wilting and Priesemann (2018) we examined the branching ratio of the networks sampled in our recordings.

Summarily, the branching ratio is the ratio of the number of neurons spiking at time n+1 to the number of spiking neurons at time

n. Critical regimes, by their nature, are balanced and avoid runaway gain (positive or negative) and have a branching ratio of 1.0 (Fig-

ure S2C). The methods introduced byWilting and Priesemann (2018) are robust to severe subsampling and thus provide an effective

alternative approach to assessing critical dynamics in our recordings.

In a network with A active neurons at time t, if the branching ratio is a fixed value then <At + 1jAt > =mAt + hwhere < j > denotes the

conditional expectation, m is the branching ratio and h is a mean rate of an external drive/stimulus. Considering subsampling, at
is proportional to At on average <atjAt > = hAt + x, where h and x are constants. This subsampling lead to a bias:

mðh2Var½A t� =Var½a t � � 1Þ. Instead of using time t and t + 1, this method focuses on times t and t + k with different time lags k =

1,.,kmaximum. With this, the branching ratio mk is <at + k jat > = mk = h2Var½At�=Var½at�mk = bmk , where b is a constant. To compute

mk with different k, we obtained an exponential curve and extractedm from this curve. For details seeWilting and Priesemann (2018).

We examined a range of k and searched different results using kmaximum from tens to one thousand.We then chose kmaximum for each

animal by checking the baseline period. We selected kmaximum as the k that returned m closest to 1.0 during baseline. For the seven

animals used in this study, kmaximum values were selected for each animal during the recording baseline and maintained throughout

the remainder of the experiment.

Consistent with our results based on DCC, the branching ratio was stable near 1.0 at baseline and transiently dropped at the onset

of monocular deprivation (Figure S2D).

Model Investigation
We simulated a model network consisting of 4750 excitatory and 250 inhibitory binary probabilistic model neurons with sparse con-

nectivity and external inputs. Connectivity between excitatory neurons and from excitatory to inhibitory neurons was 3%. Connec-

tivity from inhibitory to excitatory neurons was varied between 1 and 60%. The strength of the connection from neuron j to neuron i is

quantified in terms of the transition probability Pij, which is the probability that a spike in neuron j causes a spike in neuron i in the next

simulation time step (Karimipanah et al., 2017). In order to allow for inhibitory connections, Pij was allowed to be negative for these

connections. The binary state XiðtÞ of neuron i denotes whether the model neuron spikes ðXiðtÞ = 1Þ or does not spike ðXiðtÞ = 0Þ at
time t. At each time step, the state of all neurons was updated synchronously according to the following update rule:

Xiðt + 1Þ = Q

"
ð1� hiðtÞÞ

X
j

PijXjðtÞ + hiðtÞ � xiðtÞ
#

where xiðtÞ is a random number in ½0 1� drawn from a uniform distribution, andQ is the step function. The external input hiðtÞ quantifies
the probability of that neuron spiking due to the external input alone. External input was added to 10 percent of the excitatory neurons

and a variable percentage (20, 40, and 80%) of the inhibitory neurons. The external input was chosen to be smaller than the transition

probability Pij, which itself was small for large networks, Pij � 1=N, whereN is the total number of neurons in the network. Because of

the weak external inputs, we can employ the approximation 1� hiz1 in the above update rule. The external input hiðtÞwasmodeled

as a binary Poisson process followed by smoothing with a Gaussian filter with a width of 20 time steps. The maximum eigenvalue l of

the transition probability matrix Pij describes the network state: l< 1 denotes subcritical regime, lz1 denotes the near critical regime

and l> 1 denotes the supercritical regime (Karimipanah et al., 2017). Here, l= 1:02 corresponded to networks operating at the critical

regime. Because of the sparse connectivity, most transition probability matrix elements are zero. For the existing connections, the Pij
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values were drawn from a uniform distribution and then scaled by a constant factor to reach the desired maximum eigenvalue l. By

default, Pij was constant in the first part of the simulation.

After the first 20,000 time steps, two forms of synaptic dynamics were permitted. Spike-timing dependent plasticity (STDP) was

added according to:

dPEE
ij ðtÞ = KSTDP

h
XE
i ðtÞXE

j ðt� 1Þ� XE
j ðtÞXE

i ðt� 1Þ
i

dPEI
ij ðtÞ = � KinhX

I
j ðt� 1Þ�1�XE

i ðtÞð1 +
1

mI

Þ�
where dPEE

ij ðtÞ is the change of connection strength fromexcitatory neuron to excitatory neuronwhile dPEI
ij is the change of connection

strength from inhibitory neuron to excitatory neuron induced by STDP and mI is themean firing rate of all I neurons during baseline (Del

Papa et al., 2017). The parameter KSTDPand Kinh is a constant gain value. Synaptic scaling (SS) was added to both E and I cells

according to dPSS
ij ðtÞ = KSS½Fref

i � Fhist
i ðtÞ�, where dPSS

ij ðtÞ is the change in synaptic strength according to SS and the parameter

Fref
i is the reference firing rate for each single neuron, which provides a set point of firing rate, and Fhist

i ðtÞ is the weighted firing

rate across a 15,000 step time window. In other words, SS was a global, multiplicative change in all of the synaptic inputs onto a

neuron that functioned to compensate for alterations in the neuron’s output. SS in excitatory neurons affected both excitatory

and inhibitory inputs, while SS in inhibitory neurons affected only inhibitory to inhibitory connections. We found that firing rate and

network dynamics are relatively stable in the presence of STDP and SS. To mimic a homeostatic challenge in the model, we reduced

the external input hiðtÞ in an exponential manner leveling out at half the starting value.

Models that satisfied the following constraints were considered successful: 1) the firing rates of both excitatory and inhibitory

neurons dropped below a threshold of 75% of normalized baseline activity, 2) the absolute value of the difference of the maximum

eigenvalue of the transition probability matrix and 1.02 was larger than 0.05 before the dropping of the excitatory neuron firing rate,

i.e., the network became non-critical prior to the disruption of excitatory neuronal firing rate. This corresponds to a DCC of > 0.2. At

the end of the experiment, the sum of the excitatory and inhibitory neuron firing rate difference from baseline firing rate was less than

0.09. i.e., firing rates rebounded to baseline levels. Likewise, at the end of the experiment, the maximum eigenvalue returned to a

near-critical zone (i.e., within 0.05 of 1.02, defined a priori as criticality in this context). This corresponds to a DCC to a value of < 0.2.

DATA AND CODE AVAILABILITY

The datasets/code supporting the current study have not been deposited in a public repository because of ongoingwork, but they are

available from the Lead Contact on request (khengen@wustl.edu).
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